Derivatives of Implicit Functions

Part One

Say we have a function $z=f(x, y)$, whose graph in x, y, z space is a surface, S, which passes the Vertical Line Test. Assume the domain of f is the entire x, y plane.

Let $y=g(x)$ be a function whose graph in the x, y plane is a curve, C_{1}, which passes the Vertical Line Test. Assume the domain of g is all x. Any point on C_{1} may be referred to as (x, y) or as $(x, g(x))$.

For any point (x, y) or $(x, g(x))$ on curve C_{1}, the corresponding point on surface S has z coordinate $f(x, y)$ or $f(x, g(x))$. We now define a function $z=h(x)$ by the rule $h(x)=f(x, g(x))$. The graph of this function in the x, z plane is a curve, C_{2}, which passes the Vertical Line Test. The domain of h is all x.

For the function h, we can draw a tree diagram where z depends on x and y (accordining to the function f) and where y depends on x (according to the function g). By the Chain Rule, $\frac{d z}{d x}=\frac{\partial z}{\partial x}+\frac{\partial z}{\partial y} \frac{d y}{d x}$. In other words, $h^{\prime}(x)=f_{x}(x, y)+f_{y}(x, y) g^{\prime}(x)$.

Note that $\frac{d z}{d x}$ or $h^{\prime}(x)$ is the slope of the curve C_{2} in the x, z plane, whereas $\frac{d y}{d x}$ or $g^{\prime}(x)$ is the slope of curve C_{1} in the x, y plane.

For example, suppose $z=f(x, y)=x^{2}+y^{2}$, whose graph is a circular paraboloid. Let $y=g(x)=\sin x$. Let $z=h(x)=x^{2}+\sin ^{2} x$. On the one hand, we can find $h^{\prime}(x)$ directly: $h^{\prime}(x)=2 x+2 \sin x \cos x$. On the other hand, we can use the Chain Rule. $\frac{\partial z}{\partial x}=2 x . \quad \frac{\partial z}{\partial y}=2 y$. $\frac{d y}{d x}=\cos x$. So $\frac{d z}{d x}=2 x+2 y \cos x$. Substituting $\sin x$ in place of y gives us $2 x+2 \sin x \cos x$.

Here is a more complicated example: $z=f(x, y)=x^{4}+y^{5}+6 x^{3} y^{4}$. Let $y=g(x)=x^{2}$. Let $z=h(x)=x^{4}+\left(x^{2}\right)^{5}+6 x^{3}\left(x^{2}\right)^{4}=x^{4}+x^{10}+6 x^{11}$. On the one hand, we can find $h^{\prime}(x)$ directly: $h^{\prime}(x)=4 x^{3}+10 x^{9}+66 x^{10}$. On the other hand, we can use the Chain Rule.
$\frac{\partial z}{\partial x}=4 x^{3}+18 x^{2} y^{4} . \frac{\partial z}{\partial y}=5 y^{4}+24 x^{3} y^{3} . \frac{d y}{d x}=2 x$. So
$\frac{d z}{d x}=\left(4 x^{3}+18 x^{2} y^{4}\right)+\left(5 y^{4}+24 x^{3} y^{3}\right)(2 x)=4 x^{3}+18 x^{2} y^{4}+10 x y^{4}+48 x^{4} y^{3}$.
Substituting x^{2} in place of y gives us $4 x^{3}+18 x^{2}\left(x^{2}\right)^{4}+10 x\left(x^{2}\right)^{4}+48 x^{4}\left(x^{2}\right)^{3}=$ $4 x^{3}+18 x^{10}+10 x^{9}+48 x^{10}=4 x^{3}+10 x^{9}+66 x^{10}$.

Now suppose the curve C_{1} is a level curve for the function f, i.e., C_{1} consists of all points (x, y) such that $z=f(x, y)=k$, where k is some constant. In this scenario, C_{1} may or may not pass the Vertical Line Test. If it does, then we still have y as an explicit function of x, but if it does not, then we have y as an implicit function of x. In either case, we will continue to write $y=g(x)$ for points on curve C_{1}, but bear in mind that now g may be implicit rather than explicit. The domain of g might no longer be all x. Let D_{g} denote the domain of g. Once again, let $z=h(x)=f(x, g(x))$. The domain of h is the same as the domain of g, i.e., D_{g}. For any $x \in D_{g}$, the point $(x, g(x))$ lies on curve C_{1}, so $z=h(x)=f(x, g(x))=k$. In
other words, h is a constant function (so curve C_{2} is a horizontal line). So $h^{\prime}(x)=0$ for all $x \in D_{g}$. But the Chain Rule is still applicable, so we still have $\frac{d z}{d x}=\frac{\partial z}{\partial x}+\frac{\partial z}{\partial y} \frac{d y}{d x}$, or $h^{\prime}(x)=f_{x}(x, y)+f_{y}(x, y) g^{\prime}(x)$. We set this equal to 0 and solve for $\frac{d y}{d x}$ or $g^{\prime}(x)$. The result is $\frac{d y}{d x}=-\frac{\partial z}{\partial x} \div \frac{\partial z}{\partial y}$, or $g^{\prime}(x)=-\frac{f_{x}(x, y)}{f_{y}(x, y)}$.

Again, suppose $z=f(x, y)=x^{2}+y^{2}$, and consider the level curve $x^{2}+y^{2}=9$. This is a circle in the x, y plane centered at the origin with radius 3. This curve fails the Vertical Line Test, but it gives us y as an implicit function of x, namely, $y= \pm \sqrt{9-x^{2}}$. In the first or second quadrant, we have $y=g(x)=\sqrt{9-x^{2}}$. The domain of g is $[-3,3]$.

Let $z=h(x)=f\left(x, \sqrt{9-x^{2}}\right)=x^{2}+{\sqrt{9-x^{2}}}^{2}=x^{2}+9-x^{2}=9 . \quad h^{\prime}(x)=0$ for all $x \in[-3,3]$. Since $\frac{\partial z}{\partial x}=2 x$ and $\frac{\partial z}{\partial y}=2 y$, it follows that $\frac{d y}{d x}=-(2 x) \div(2 y)=-\frac{x}{y}$. If we are in the first or second quadrant, we may substitute $\sqrt{9-x^{2}}$ in place of y, giving us $\frac{d y}{d x}=-\frac{x}{\sqrt{9-x^{2}}}$. This same result could have been obtained directly: Since $y=\sqrt{9-x^{2}}=\left(9-x^{2}\right)^{1 / 2}$, $\frac{d y}{d x}=\frac{1}{2}\left(9-x^{2}\right)^{-1 / 2}(-2 x)=-x\left(9-x^{2}\right)^{-1 / 2}=-\frac{x}{\sqrt{9-x^{2}}}$.

Part Two

Say we have a function $w=f(x, y, z)$, whose graph in x, y, z, w space is a hyper-surface, H, which passes the Vertical Line Test. Assume the domain of f is all x, y, z space.

Let $z=g(x, y)$ be a function whose graph in x, y, z space is a surface, S_{1}, which passes the Vertical Line Test. Assume the domain of g is the entire x, y plane. Any point on S_{1} may be referred to as (x, y, z) or as $(x, y, g(x, y))$.

For any point (x, y, z) or $(x, y, g(x, y))$ on surface S_{1}, the corresponding point on hyper-surface H has w coordinate $f(x, y, z)$ or $f(x, y, g(x, y))$. We now define a function $w=h(x, y)$ by the rule $h(x, y)=f(x, y, g(x, y))$. The graph of this function in x, y, w space is a surface, S_{2}, which passes the Vertical Line Test. The domain of h is the entire x, y plane.

For the function h, we can draw a tree diagram where w depends on x, y, and z (accordining to the function f) and where z depends on x and y (according to the function g). By the Chain Rule:

- $h_{x}(x, y)=f_{x}(x, y, z)+f_{z}(x, y, z) g_{x}(x, y)$
- $h_{y}(x, y)=f_{y}(x, y, z)+f_{z}(x, y, z) g_{y}(x, y)$

If we want to write these equations in Leibniz notation, we must be careful to avoid ambiguity. First, here are the unambiguous notations:

- For $g_{x}(x, y)$, we can write either $\frac{\partial g}{\partial x}$ or $\frac{\partial z}{\partial x}$.
- For $g_{y}(x, y)$, we can write either $\frac{\partial g}{\partial y}$ or $\frac{\partial z}{\partial y}$.
- For $f_{z}(x, y, z)$, we can write either $\frac{\partial f}{\partial z}$ or $\frac{\partial w}{\partial z}$.

On the other hand, here are the potentially problematic notations:

- $f_{x}(x, y, z)$ could be written as $\frac{\partial f}{\partial x}$ or $\frac{\partial w}{\partial x}$.
- $f_{y}(x, y, z)$ could be written as $\frac{\partial f}{\partial y}$ or $\frac{\partial w}{\partial y}$.
- $h_{x}(x, y)$ could be written as $\frac{\partial h}{\partial x}$ or $\frac{\partial w}{\partial x}$.
- $h_{y}(x, y)$ could be written as $\frac{\partial h}{\partial y}$ or $\frac{\partial w}{\partial y}$.

Do you see the problem? The notation $\frac{\partial w}{\partial x}$ could refer to either $f_{x}(x, y, z)$ or to $h_{x}(x, y)$, and the notation $\frac{\partial w}{\partial y}$ could refer to either $f_{y}(x, y, z)$ or to $h_{y}(x, y)$. To avoid ambiguity, we will use $\frac{\partial w}{\partial x}$ only to refer to $f_{x}(x, y, z)$, and we will use $\frac{\partial w}{\partial y}$ only to refer to $f_{y}(x, y, z)$. We will refer to $h_{x}(x, y)$ only as $\frac{\partial h}{\partial x}$, and we will refer to $h_{y}(x, y)$ only as $\frac{\partial h}{\partial y}$. Thus, we may write the above equations in Leibniz notation as follows:

- $\frac{\partial h}{\partial x}=\frac{\partial f}{\partial x}+\frac{\partial f}{\partial z} \frac{\partial g}{\partial x}=\frac{\partial w}{\partial x}+\frac{\partial w}{\partial z} \frac{\partial z}{\partial x}$
- $\frac{\partial h}{\partial y}=\frac{\partial f}{\partial y}+\frac{\partial f}{\partial z} \frac{\partial g}{\partial y}=\frac{\partial w}{\partial y}+\frac{\partial w}{\partial z} \frac{\partial z}{\partial y}$

Note that $h_{x}(x, y)$ or $\frac{\partial h}{\partial x}$ is the slope of the surface S_{2} in x, y, w space in the direction of $\mathbf{i}=\langle 1,0\rangle$, and $h_{y}(x, y)$ or $\frac{\partial h}{\partial y}$ is the slope of the surface S_{2} in x, y, w space in the direction of $\mathbf{j}=\langle 0,1\rangle$, whereas $g_{x}(x, y)$ or $\frac{\partial g}{\partial x}$ is the slope of the surface S_{1} in x, y, z space in the direction of $\mathbf{i}=<1,0\rangle$, and $g_{y}(x, y)$ or $\frac{\partial g}{\partial y}$ is the slope of the surface S_{1} in x, y, z space in the direction of $\mathbf{j}=\langle 0,1\rangle$.

For example, suppose $w=f(x, y, z)=x^{2}+y^{2}+z^{2}$. Let $z=g(x, y)=x^{2}-y^{2}$, whose graph is a hyperbolic paraboloid. Let $w=h(x, y)=x^{2}+y^{2}+\left(x^{2}-y^{2}\right)^{2}=x^{2}+y^{2}+x^{4}-2 x^{2} y^{2}+y^{4}$. On the one hand, we can find $h_{x}(x, y)$ and $h_{y}(x, y)$ directly:

- $h_{x}(x, y)=2 x+4 x^{3}-4 x y^{2}$
- $h_{y}(x, y)=2 y-4 x^{2} y+4 y^{3}$

On the other hand, we can use the Chain Rule.
$\frac{\partial f}{\partial x}=2 x . \quad \frac{\partial f}{\partial y}=2 y . \quad \frac{\partial f}{\partial z}=2 z . \quad \frac{\partial g}{\partial x}=2 x . \quad \frac{\partial g}{\partial y}=-2 y$.
So $\frac{\partial h}{\partial x}=2 x+(2 z)(2 x)=2 x+4 x z$, and $\frac{\partial h}{\partial y}=2 y+(2 z)(-2 y)=2 y-4 y z$.
Substituting $x^{2}-y^{2}$ in place of z gives us $\frac{\partial h}{\partial x}=2 x+4 x\left(x^{2}-y^{2}\right)=2 x+4 x^{3}-4 x y^{2}$, and $\frac{\partial h}{\partial y}=2 y-4 y\left(x^{2}-y^{2}\right)=2 y-4 x^{2} y+4 y^{3}$.

Now suppose the surface S_{1} is a level surface for the function f, i.e., S_{1} consists of all points (x, y, z) such that $w=f(x, y, z)=k$, where k is some constant. In this scenario, S_{1} may or may not pass the Vertical Line Test. If it does, then we still have z as an explicit function of x and y, but if it does not, then we have z as an implicit function of x and y. In either case, we will continue to write $z=g(x, y)$ for points on surface S_{1}, but bear in mind that now g may be implicit rather than explicit. The domain of g might no longer be the entire x, y plane. Let D_{g} denote the domain of g. Once again, let $w=h(x, y)=f(x, y, g(x, y))$. The domain of h is the same as the domain of g, i.e., D_{g}. For any $(x, y) \in D_{g}$, the point $(x, y, g(x, y))$ lies on surface S_{1}, so $w=h(x, y)=f(x, y, g(x, y))=k$. In other words, h is a constant function (so surface S_{2} is a horizontal plane). So $h_{x}(x, y)=0$ and $h_{y}(x, y)=0$ for all $(x, y) \in D_{g}$. But the Chain Rule is still applicable, so we still have $\frac{\partial h}{\partial x}=\frac{\partial f}{\partial x}+\frac{\partial f}{\partial z} \frac{\partial g}{\partial x}$ and $\frac{\partial h}{\partial y}=\frac{\partial f}{\partial y}+\frac{\partial f}{\partial z} \frac{\partial g}{\partial y}$. We set these equal to 0 and solve for $\frac{\partial g}{\partial x}$ and $\frac{\partial g}{\partial y}$. The results are:

- $\frac{\partial g}{\partial x}=-\frac{\partial f}{\partial x} \div \frac{\partial f}{\partial z}$, or $g_{x}(x, y)=-\frac{f_{x}(x, y, z)}{f_{z}(x, y, z)}$
- $\frac{\partial g}{\partial y}=-\frac{\partial f}{\partial y} \div \frac{\partial f}{\partial y}$, or $g_{y}(x, y)=-\frac{f_{y}(x, y, z)}{f_{z}(x, y, z)}$

Again, suppose $w=f(x, y, z)=x^{2}+y^{2}+z^{2}$, and consider the level surface $x^{2}+y^{2}+z^{2}=9$. This is a sphere in x, y, z space centered at the origin with radius 3 . This curve fails the Vertical Line Test, but it gives us z as an implicit function of x and y, namely, $z= \pm \sqrt{9-x^{2}-y^{2}}$. In the first through fourth octants, we have $z=g(x, y)=\sqrt{9-x^{2}-y^{2}}$. The domain of g is closed disk $x^{2}+y^{2} \leq 9$.

Let $w=h(x, y)=f\left(x, y, \sqrt{9-x^{2}-y^{2}}\right)=x^{2}+y^{2}+{\sqrt{9-x^{2}-y^{2}}}^{2}=x^{2}+y^{2}+9-x^{2}-y^{2}=9$. $h_{x}(x, y)=0$ and $h_{y}(x, y)=0$ for all (x, y) in the disk $x^{2}+y^{2} \leq 9$. Since $\frac{\partial f}{\partial x}=2 x, \frac{\partial f}{\partial y}=2 y$, and $\frac{\partial f}{\partial z}=2 z$, it follows that $\frac{\partial g}{\partial x}=-(2 x) \div(2 z)=-\frac{x}{z}$ and $\frac{\partial g}{\partial y}=-(2 y) \div(2 z)=-\frac{y}{z}$. If we are in the first through fourth octants, we may substitute $\sqrt{9-x^{2}-y^{2}}$ in place of z, giving us $\frac{\partial g}{\partial x}=-\frac{x}{\sqrt{9-x^{2}-y^{2}}}$ and $\frac{\partial g}{\partial y}=-\frac{y}{\sqrt{9-x^{2}-y^{2}}}$. These same results could have been obtained directly: Since $z=\sqrt{9-x^{2}-y^{2}}=\left(9-x^{2}-y^{2}\right)^{1 / 2}$,
$\frac{\partial g}{\partial x}=\frac{1}{2}\left(9-x^{2}-y^{2}\right)^{-1 / 2}(-2 x)=-x\left(9-x^{2}-y^{2}\right)^{-1 / 2}=-\frac{x}{\sqrt{9-x^{2}-y^{2}}}$, and
$\frac{\partial g}{\partial y}=\frac{1}{2}\left(9-x^{2}-y^{2}\right)^{-1 / 2}(-2 y)=-y\left(9-x^{2}-y^{2}\right)^{-1 / 2}=-\frac{y}{\sqrt{9-x^{2}-y^{2}}}$.

